

On the Second Homology of Cactus Groups

Department of Mathematics, Graduate School of Science, Hokkaido University
Jingya ZHANG *

Abstract

We use Hopf's formula to show that the second integral homology of cactus groups are elementary abelian 2-groups of finite rank. Consequently, the second rational homology of cactus groups are trivial.

1 Introduction

The cactus groups J_n ($n \geq 2$) first appeared in [7] and [6], where they were referred to as *quasibraid groups* and *mock reflection groups*, respectively. The symmetric group S_n on n letters acts on $\overline{M}_0^{n+1}(\mathbb{R})$, the Deligne–Knudsen–Mumford moduli space of stable real curves of genus 0 with $n+1$ marked points, by permuting the first n marked points. The cactus group J_n can be identified with the orbifold fundamental group of the quotient orbifold $[\overline{M}_0^{n+1}(\mathbb{R})/S_n]$. Henriques and Kamnitzer [9] proposed the term *cactus group*, inspired by the Opuntia-cactus-like form of stable real curves in the moduli spaces above. Cactus groups also arise in the study of hives and octahedron recurrence [11, 10]. Their generalizations to other Coxeter types have since made them a recurrent tool in representation theory [2, 12, 5].

Concretely, for a given integer $n \geq 2$, the *cactus group of degree n* , denoted by J_n , defined by the generators $\sigma_{p,q}$ with $1 \leq p < q \leq n$ and the following three relations:

- (1) $\sigma_{p,q}^2 = 1$ for $1 \leq p < q \leq n$,
- (2) $\sigma_{p,q}\sigma_{r,s} = \sigma_{r,s}\sigma_{p,q}$ for $[p, q] \cap [r, s] = \emptyset$,
- (3) $\sigma_{p,q}\sigma_{r,s} = \sigma_{p+q-s, p+q-r}\sigma_{p,q}$ for $[r, s] \subset [p, q]$.

Here, $[p, q]$ denotes the set $\{p, p+1, \dots, q-1, q\}$ for positive integers p, q with $p < q$.

If the third relation is omitted, the resulting presentation defines a right-angled Coxeter group W_n . Therefore, there is a natural surjection of W_n onto J_n . Moreover, there is also a natural surjective homomorphism

$$\pi: J_n \rightarrow S_n, \quad \sigma_{p,q} \mapsto s_{p,q},$$

*E-mail:jingya.zhang.y6@elms.hokudai.ac.jp

where $s_{p,q} \in S_n$ is the permutation defined by

$$s_{p,q}(i) = \begin{cases} p+q-i, & \text{if } i \in [p, q], \\ i, & \text{otherwise.} \end{cases}$$

The kernel of π is called the *pure cactus group of degree n*, and is denoted by PJ_n .

Since Davis–Januszkiewicz–Scott proved in [6] that the moduli space $\overline{M}_0^{n+1}(\mathbb{R})$ is actually a $K(\pi, 1)$ -space for the pure cactus group PJ_n , the orbifold homology of the quotient orbifold $[\overline{M}_0^{n+1}(\mathbb{R})/S_n]$ coincides with the group homology of J_n . Moreover, since S_n is finite, the rational orbifold homology agrees with the rational homology of the coarse quotient. Consequently, the rational homology of J_n is isomorphic to the rational homology of the quotient space, that is,

$$H_*(J_n; \mathbb{Q}) \cong H_*^{\text{orb}}([\overline{M}_0^{n+1}(\mathbb{R})/S_n]; \mathbb{Q}) \cong H_*(\overline{M}_0^{n+1}(\mathbb{R})/S_n; \mathbb{Q}).$$

Although the rational cohomology rings of the pure cactus groups have been determined [8], little is known about the homology of cactus groups. The aim of this paper is to compute the second homology of cactus groups. Our approach is inspired by [1], where Hopf's formula was applied to Coxeter groups and Artin groups to obtain the second mod 2 homology of all Artin groups.

Notations. For a group G , the abelianization of G is denoted by G^{ab} . Moreover, we write $H_n(G)$ for the n -th homology group of G with trivial integral coefficients.

2 Preliminaries

2.1 Hopf's formula

We recall Hopf's formula, which gives a description of the second integral homology of an arbitrary group.

Theorem 2.1 (Brown [3, Section II.5]) *Let G be a group with presentation $\langle X \mid R \rangle$. Then*

$$H_2(G) \cong \frac{N \cap [F, F]}{[N, F]},$$

where $F = F(X)$ is the free group on X and $N = N(R)$ is the normal closure of R on F .

Hopf's formula satisfies the following naturality property.

Lemma 2.2 (Brown [3, Section II.6, Exercise 3(b)]) *Let $G = F/N = \langle X \mid R \rangle$ and $G' = F'/N' = \langle X' \mid R' \rangle$ as in Theorem 2.1. Suppose a homomorphism $\alpha : G \rightarrow G'$ lifts to $\tilde{\alpha} : F \rightarrow F'$. Then the following diagram commutes,*

$$\begin{array}{ccc} H_2(G) & \xrightarrow{\cong} & (N \cap [F, F])/[N, F] \\ H_2(\alpha) \downarrow & & \downarrow \alpha_* \\ H_2(G') & \xrightarrow{\cong} & (N' \cap [F', F'])/[N', F'] \end{array}$$

where α_* is induced by $\tilde{\alpha}$.

Lemma 2.3 (Akita–Liu [1, Lemma 3.6, 3.7]) *Let $G = F/N = \langle X \mid R \rangle$ as in Theorem 2.1. Then $N/[N, F]$ is abelian and for any $n \in N$ and $f \in F$, we have*

$$fnf^{-1} \equiv n \pmod{[N, F]}.$$

Lemma 2.3 implies that any element of $N/[N, F]$ can be represented by an element of the form

$$\prod_{r \in R} r^{n(r)} \in N,$$

for some integers $n(r) \in \mathbb{Z}$. By Hopf's formula, those elements that also lie in $[F, F]$, namely

$$\prod_{r \in R} r^{n(r)} \in N \cap [F, F],$$

represent all elements of $H_2(G)$. Therefore, we can easily obtain an upper bound for the number of generators of $H_2(G)$.

Lemma 2.4 (Akita–Liu [1, Lemma 3.8]) *Let $G = F/N = \langle X \mid R \rangle$ as in Theorem 2.1. If $x, y, z \in F$ satisfy $[x, y], [x, z] \in N \cap [F, F]$, then*

$$[x, yz] \equiv [x, y][x, z] \pmod{[N, F]}.$$

2.2 First integral homology of cactus groups

Let $n \geq 2$ be an integer. The first integral homology group of J_n , which is isomorphic to the abelianization J_n^{ab} , is an abelian group generated by the elements $\sigma_{p,q}$ with $1 \leq p < q \leq n$, subject to the following two relations:

- $\sigma_{p,q}^2 = 1$ for $1 \leq p < q \leq n$,
- $\sigma_{p,q}\sigma_{r,s} = \sigma_{p+q-s, p+q-r}\sigma_{p,q}$ for $[r, s] \subset [p, q]$.

Since all generators commute in $H_1(J_n)$, the second relation implies that

$$\sigma_{r,s} = \sigma_{p+q-s, p+q-r} \quad \text{for } [r, s] \subset [p, q],$$

which is equivalent to

$$\sigma_{1,t} = \sigma_{k, k+t-1} \quad \text{for } 2 \leq t \leq n, 2 \leq k, k+t-1 \leq n.$$

If we define $\sigma_t := \sigma_{1,t}$ for $2 \leq t \leq n$, then $H_1(J_n)$ is an abelian group generated by $\sigma_2, \dots, \sigma_n$, subject to the relations

$$\sigma_t^2 = 1 \quad \text{for } 2 \leq t \leq n.$$

Consequently, we obtain the following two lemmas.

Lemma 2.5 *For $n \geq 2$, the first integral homology of J_n is an elementary abelian 2-group of rank $n-1$ with basis $\{\sigma_t \mid 2 \leq t \leq n\}$.*

Lemma 2.6 *For $n \geq 3$, the second integral homology of J_n^{ab} is an elementary abelian 2-group of rank $\binom{n-1}{2}$ with basis $\{[\sigma_i, \sigma_j] \mid 2 \leq i < j \leq n\}$.*

2.3 Minimal presentation of cactus groups

Chemin and Nanda obtained a minimal presentation for cactus groups in terms of generators and non-redundant relations as follows:

Theorem 2.7 (Chemin–Nanda [4, Theorem A]) *For $n \geq 2$, the cactus group J_n admits a presentation with generators $\sigma_i := \sigma_{1,i}$ for $2 \leq i \leq n$, subject to the following relations:*

- (i) $\sigma_i^2 = 1 \quad \text{for } 2 \leq i \leq n,$
- (ii) $(\sigma_k \sigma_i \sigma_k \sigma_j)^2 = 1 \quad \text{for } 4 \leq i + j \leq k \leq n, 2 \leq i \leq j,$
- (iii) $\sigma_k \sigma_{i+j} \sigma_j \sigma_{i+j} = \sigma_{k-i} \sigma_j \sigma_{k-i} \sigma_k \quad \text{for } 3 \leq i + j < k \leq n, i \geq 1, j \geq 2, i + j \leq k - i.$

Moreover, this presentation is minimal in terms of the number of generators.

We further simplify this minimal presentation. By straightforward calculations, the relations (b) and (c) in the following corollary are equivalent to relations (ii) and (iii) in Theorem 2.7, respectively.

Corollary 2.8 *For $n \geq 2$, the cactus group J_n admits a presentation with generators $\sigma_i := \sigma_{1,i}$ for $2 \leq i \leq n$ and the following relations:*

- (a) $\sigma_i^2 = 1 \quad \text{for } 2 \leq i \leq n,$
- (b) $[\sigma_k \sigma_i \sigma_k, \sigma_j] = 1 \quad \text{for } 4 \leq i + j \leq k \leq n, 2 \leq i \leq j,$
- (c) $[\sigma_{k-i} \sigma_k \sigma_{i+j}, \sigma_j] = 1 \quad \text{for } 3 \leq i + j < k \leq n, i \geq 1, j \geq 2, i + j \leq k - i.$

Moreover, this presentation is minimal in terms of the number of generators.

We will use the minimal presentation in Corollary 2.8 to compute the second integral homology of cactus groups.

3 Main Results

Our main result is stated as follows.

Theorem 3.1 *The second integral homology of J_2 and J_3 are trivial. For $n \geq 4$, the second integral homology of J_n is a nontrivial elementary abelian 2-group of finite rank.*

As an immediate consequence of Theorem 3.1, we obtain the following corollary.

Corollary 3.2 *For $n \geq 2$, the second rational homology of J_n is trivial.*

References

- [1] T. Akita and Y. Liu, *Second mod 2 homology of Artin groups*, Algebr. Geom. Topol. **18** (2018), no.1, 547–568.
- [2] C. Bonnafé, *Cells and cacti*, Int. Math. Res. Not. **19** (2016), 5775–5800.
- [3] K. S. Brown, *Cohomology of groups*, volume 87 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.
- [4] H. Chemin and N. Nanda, *Minimal presentation, finite quotients and lower central series of cactus groups*, Bulletin des Sciences Mathématiques, **204** (2025), 103669, ISSN 0007-4497.
- [5] M. Chmutov, M. Glick and P. Pylyavskyy, *The Berenstein-Kirillov group and cactus groups*, J. Comb. Algebra, **4**(2) (2020), 111–140.
- [6] M. Davis, T. Januszkiewicz and R. Scott, *Fundamental groups of blow-ups*, Adv. Math., **177**(1) (2003), 115–179.
- [7] S. L. Devadoss, *Tessellations of moduli spaces and the mosaic operad*, In Homotopy invariant algebraic structures (Baltimore, MD, 1998), volume 239 of Contemp. Math., pages 91–114. Amer. Math. Soc., Providence, RI, 1999.
- [8] P. Etingof, A. Henriques, J. Kamnitzer and E. M. Rains, *The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points*, Ann. of Math. (2) **171** (2010), no. 2, 731–777.
- [9] A. Henriques and J. Kamnitzer, *Crystals and coboundary categories*, Duke Math. J., **132**(2) (2006), 191–216.
- [10] A. Henriques and J. Kamnitzer, *The octahedron recurrence and gln crystals*, Adv. Math., **206**(1) (2006), 211–249.
- [11] A. Knutson, T. Tao and C. Woodward, *A positive proof of the Littlewood–Richardson rule using the octahedron recurrence*, Electron. J. Combin., **11**(1) (2004) Research Paper 61.
- [12] I. Losev, *Cacti and cells*, J. Eur. Math. Soc. (JEMS), **21**(6) (2019), 1729–1750.